
Reverse Engineering the Instagram API to Create a Messaging Bot
by Vala Bahrami

Motivations
I frequently spend time on Instagram

browsing posts, sending them to friends for laughs
as many people do. I had recently encountered an
Instagram account bot which allowed individuals
to send them posts, and the bot would respond by
sending them the post’s uploaded media, be it a
photo or a video. Essentially, the bot allowed users
to save media from other posts to their own phones
without needing to screen record or screenshot. I
found it very interesting that the creators of this bot
account were able to create such a tool despite
Instagram providing no such API to developers, to discourage the creation of robotic accounts which may
damage the reputation of their platform.

I decided to attempt to create my own botted account both as a way of having a private tool which
would do this for me quickly (the accounts I had originally stumbled upon had many users and as such
took a while to send you the media you wanted), and as a learning experience into the inner workings of a
massive platform which I believed would be both interesting and valuable in the future.

Unexpected Barriers
I knew from past experiences that the best way to get started would be to run all the Instagram

mobile app’s traffic through a proxy. If I wanted to recreate functionality only available on the app
elsewhere, such as in a Python program, I had to see how the app was performing these actions itself. I
had done this previously to get information from websites, namely from YouTube, so I could build a tool
that downloaded YouTube videos. In that situation, I was able to use my browser’s developer tools
window to monitor network traffic. It would be no such walk in the park with the Instagram app. For
starters, I tried to route my iPhone’s traffic
through a proxy on my laptop. Upon opening
and using the Instagram app, my proxy would
log requests to Instagram, but none of the
requests would be successful, nor was the data
being transmitted even readable. A quick
Google search later revealed the culprit:
“SSL/Certificate pinning”, the process of
baking into an application the only acceptable
certificate (or set of certificates) for a valid
connection to be made to a remote server, in
this case Instagram’s servers. In short, the
Instagram app would only allow requests to be

1



made to the Instagram server if the traffic was in no way being spied on by an outsider (which could only
have had a non-Instagram certificate).

Certificate Pinning is a neat security mechanism to prevent “Man in The Middle” attacks, which
can be done with dubious certificate authorities installed on the victim’s device, but in my case it only
impeded my research. If I myself was the one trying to view my own personal traffic, but the app had
been designed to keep anyone from reading traffic as a way to keep attackers out, how could I still find a
way to view the traffic for research and reverse engineering? The answer was… I had no idea. Again
resorting to Google as one does, I found that there were two solutions. The first: A patched Instagram
APK. An APK is an Android app, and some other clever hackers and researchers had patched the
Instagram Android app to remove the certificate pinning feature. The problem? Well, there were two: The
first was that the only publicly available patched APKs that I could find were of very old Instagram app
versions- so old in fact, that they lacked many of the key features that I was trying to reverse engineer.
The second issue was that I didn’t even have an Android device! Even if I did find a new version with a
patched APK, it would be worthless with no Android device to install it on. But- there had to be a reason
that no one else was making these patched APKs anymore. I dug a little deeper and found out that
Facebook (now Meta) actually had begun providing security researchers access to a setting on their
registered accounts which allowed them to turn off certificate pinning from within the app - as easy as
that! Too easy… what was the catch?

The Catch
This feature was only available on Android devices. Oh come on!

It seems as though all of the security researching tools, both official and
those created by independent community members were catered to the
Android researching audience, which makes sense, as I suppose it is
easier to tinker with unofficial content on Android than iOS. Now, what
was I to do? From my previous projects I remembered working with an
IDE called Android Studio, and I remembered that Android Studio
allowed you to emulate an Android device for testing APKs. I quickly
downloaded the emulator command-line portion of Android Studio and
after a long while of figuring out which system images were compatible
with my MacBook’s processor, I had an emulated version of Android up
and running on my laptop. I then registered my Instagram test account as
a researcher account and was able to disable certificate pinning. Now, I
had everything I needed to begin reverse engineering.

Finding Endpoints
In order to be able to recreate the functionality of the Instagram

app in my bot, such as sending messages, I needed to see exactly what
endpoints the app used to communicate with the Instagram servers. For
example, in order to send a text direct message, the app would send an HTTP POST request to the URL:

https://i.instagram.com/api/v1/direct_v2/threads/broadcast/text/

Inside the request’s body would be a JSON payload containing the desired recipient and message, along
with a plethora of other data about the event, such as how the message was sent. Such parameters in the

2



request body include: send_attribution, recipient_users, is_shh_mode, and of course text for the actual
message itself. These are only a select few among the many other parameters the app sends for quality
assurance and usage statistics. I spent a long while exploring all direct message features with the proxy
running to scrape all the endpoints I would need to build my bot.

Automation
With all the information I needed, I opened up a new Python

file and started experimenting with sending some requests. The first bit
of app functionality that I needed to recreate was logging in. If I
couldn’t find a way to “log in” through the API, I would not be able to
puppeteer any account. Luckily, the log in endpoint worked like a
charm and all I had to do was mimic the app’s login flow with manual
requests and use the correct user agent. I now had a valid session
cookie that I could send with each request to verify my authenticated
status to Instagram, the same way one’s browser remains logged in for
a long time after they first input their credentials to a given site such as
Facebook. Authentication out of the way, I could now begin working
on the meat of the project, sending direct messages. When sending a
direct message POST request, it is required to also provide a valid
send_attribution field. This field communicates how the message
thread was created, and as such is valuable to Instagram’s servers in
determining the nature of a message. If, for example, the message
thread is being created through the “New Message” button inside the
direct message menu, Instagram may enforce a stricter rate limit as it is
not likely a real person is continuously typing various usernames
manually and then composing a new message to them. On the other
hand, if the thread is created through the “Message” button on a user’s
profile, this is an action which may occur more commonly and thus is
subject to a more lax rate limit policy. Of course, I knew none of this at
first, and had to experiment with various send_attribution values until I stumbled upon the best for my
purposes: “message_button”.

Sending Photos & Videos
Despite all the work I had put into the project, nothing could prepare me for just how difficult the

key part I had yet to complete would be. I knew that in comparison to sending text, sending media would
be no small task, but I never could have anticipated it would’ve been as difficult as it was. Instagram’s
media processing flow, built to handle tens of thousands (likely more) of simultaneous media uploads to
their encoding servers, was much more complex than anything I had ever dealt with, and as it was not
meant to be “reverse engineered” by an outsider, it had a shroud of cold unfriendliness surrounding it. I
decided to start with sending photos, figuring it would be easier. First thing of note when implementing
photo sending functionality was that when a photo was sent in the app, two POST requests were made (as
opposed to the one request made for sending text). One of these was for uploading the photo, and the
other for “sending” it. As an example, the photo could be uploaded with the first request, but if it was

3



never “sent” with the second request, it would never actually be messaged. If one tried to use only the
second request without uploading the photo using the first, an error message would be returned.
Additionally, the upload request went to a strange top level endpoint (no “/api/v1/” path as the other
endpoints had) with the URL:

https://i.instagram.com/rupload_igphoto/[upload_name]
(where [upload_name] is replaced with a specially formatted name for the uploaded file). Sidenote: I have
no idea what the “r” in “rupload_igphoto” is meant to refer to, I can only guess it may have something to
do with Redis? Regardless, I will spare you the painfully boring details of the second request, but just
know it required me to go through endless nested JSON hell. Moving on to the video endpoint, I expected
to have a better grasp on things now that I had dealt with the photos- a naive assumption. Sending videos
required 3 requests, one of which was a GET which had to occur before the upload request that
“initialized” the upload. There were also a ton more parameters which had to be sent in the POST requests
with identifying information about the video, and it took me a while to recreate the functionality in
Python, but eventually after much trial and error I had done it.

Completion
After polishing off some aspects of my implementation and adding a few more bits of

functionality (sending profiles, GIFs, clickable links, etc) I amassed my loose functions into a Python
class. I could now reuse all of my code easily if I desired by importing and initializing my API class and
calling my own functions, so if I ever desired to send DMs programmatically I could easily do so in no
more than a few lines. As an example:

from myInstagramAPI import myInstagramAPI

api = myInstagramAPI(“username”, “password”)

api.login()

api.createMsgThread(“Message Text”, username=“recipient_username”)

This project took much longer than I thought it would, but I greatly enjoyed the satisfaction that came
with finally recreating functionality that was giving me the most trouble, such as sending videos. I learned
a lot not only about reverse engineering, but also the internal design and operations of massive social
media networks. The API wrapper I wrote would prove to be very lucrative for me in the future, when I
began creating specialized Instagram bots and selling access to individuals desiring to market their social
media profiles. Thank you for reading!

4

https://redis.com

